## Previsione della domanda

- esercizi di base -





Prof. Riccardo Melloni riccardo.melloni@unimore.it

Università di Modena and Reggio Emilia Dipartimento di Ingegneria "Enzo Ferrari" via Vignolese 905, 41100, Modena - Italia Gruppo di Ricerca: "Impianti Industriali" 059-2056113

Ing. Giovanni Davoli Ing. Andrea Govoni Ing. Sergio A. Gallo.

### Esercizio 1:

Nella tabella è riportata la domanda mensile registrata negli ultimi due anni.

- a) Valutare la previsione utilizzando le tecniche:
- Domanda dell'ultimo periodo,
- Media aritmetica,
- Media mobile con due periodi.
- b) Utilizzando il MAD come criterio, determinare la più idonea tra le tre tecniche.

$$MAD = \frac{1}{N} \sum_{t=1}^{N} |E_t|$$

**MAD** 

c) Calcolare la domanda prevista per il 25<sup>n</sup>ese con ognuna delle tre tecniche.

|      |      | Ultimo periodo<br>Domanda |     | Media<br>Aritmetica<br>Domanda |     | Media mobile 2<br>periodi<br>Domanda |     |
|------|------|---------------------------|-----|--------------------------------|-----|--------------------------------------|-----|
| Mese | Dom  | prevista                  | AD  | prevista                       | AD  | prevista                             | AD  |
| 1    | 34   | -                         | -   | -                              | -   | -                                    | -   |
| 2    | 44   | 34                        | 10  | -                              | -   | -                                    | -   |
| 3    | 42   | 44                        | 2   | 39                             | 3   | 39                                   | 3   |
| 4    | 30   | 42                        | 12  | 40                             | 10  | 43                                   | 13  |
| 5    | 46   | 30                        | 16  | 38                             | 8   | 36                                   | 10  |
| 6    | 44   | 46                        | 2   | 39                             | 5   | 38                                   | 6   |
| 7    | 56   | 44                        | 12  | 40                             | 16  | 45                                   | 11  |
| 8    | 50   | 56                        | 6   | 42                             | 8   | 50                                   | 0   |
| 9    | 38   | 50                        | 12  | 43                             | 5   | 53                                   | 15  |
| 10   | 44   | 38                        | 6   | 43                             | 1   | 44                                   | 0   |
| 11   | 36   | 44                        | 8   | 43                             | 7   | 41                                   | 5   |
| 12   | 46   | 36                        | 10  | 42                             | 4   | 40                                   | 6   |
| 13   | 42   | 46                        | 4   | 43                             | 1   | 41                                   | 1   |
| 14   | 30   | 42                        | 12  | 42                             | 12  | 44                                   | 14  |
| 15   | 52   | 30                        | 22  | 42                             | 10  | 36                                   | 16  |
| 16   | 48   | 52                        | 4   | 42                             | 6   | 41                                   | 7   |
| 17   | 58   | 48                        | 10  | 43                             | 15  | 50                                   | 8   |
| 18   | 54   | 58                        | 4   | 44                             | 10  | 53                                   | 1   |
| 19   | 46   | 54                        | 8   | 44                             | 2   | 56                                   | 10  |
| 20   | 48   | 46                        | 2   | 44                             | 4   | 50                                   | 2   |
| 21   | 40   | 48                        | 8   | 44                             | 4   | 47                                   | 7   |
| 22   | 50   | 40                        | 10  | 44                             | 6   | 44                                   | 6   |
| 23   | 58   | 50                        | 8   | 44                             | 14  | 45                                   | 13  |
| 24   | 60   | 58                        | 2   | 45                             | 15  | 54                                   | 6   |
| 25   |      | 60                        |     | 46                             |     | 59                                   |     |
| tot  | 1096 |                           | 190 |                                | 166 |                                      | 160 |
|      |      |                           |     |                                |     |                                      |     |

8,26

7,55

### Esercizio 2: (Analisi di regressione)

La tabella riporta le vendite annuali di un'azienda negli ultimi 7 anni.

| Anno | Domanda Y (10 <sup>6</sup> ) | tY    | $t^2$ | $Y^2$ |
|------|------------------------------|-------|-------|-------|
| 1    | 1,76                         | 1,76  | 1     | 3,09  |
| 2    | 2,12                         | 4,24  | 4     | 4,49  |
| 3    | 2,35                         | 7,05  | 9     | 5,52  |
| 4    | 2,80                         | 11,2  | 16    | 7,84  |
| 5    | 3,20                         | 16    | 25    | 10,24 |
| 6    | 3,75                         | 22,5  | 36    | 14,06 |
| 7    | 3,80                         | 26,6  | 49    | 14,44 |
| tot  | 19,78                        | 89,35 | 140   | 59,69 |

#### Determinare:

- a) La retta di regressione,
- b) La deviazione standard,
- c) Il coefficiente di correlazione,
- d) La domanda prevista per l'anno successivo.

## Esercizio 2: (Analisi di regressione)

| Anno | Domanda Y (10 <sup>6</sup> ) | tΥ    | t <sup>2</sup> | $Y^2$ |
|------|------------------------------|-------|----------------|-------|
| 1    | 1,76                         | 1,76  | 1              | 3,09  |
| 2    | 2,12                         | 4,24  | 4              | 4,49  |
| 3    | 2,35                         | 7,05  | 9              | 5,52  |
| 4    | 2,80                         | 11,2  | 16             | 7,84  |
| 5    | 3,20                         | 16    | 25             | 10,24 |
| 6    | 3,75                         | 22,5  | 36             | 14,06 |
| 7    | 3,80                         | 26,6  | 49             | 14,44 |
| tot  | 19,78                        | 89,35 | 140            | 59,69 |

#### Determinare:

### a) La retta di regressione,

$$a = \frac{\sum_{i=1}^{n} Y_{i} - b \cdot \sum_{i=1}^{n} t_{i}}{n}$$

$$b = \frac{n \cdot \sum_{i=1}^{n} t_{i} \cdot Y_{i} - \left(\sum_{i=1}^{n} t_{i}\right) \cdot \left(\sum_{i=1}^{n} Y_{i}\right)}{n \cdot \sum_{i=1}^{n} t_{i}^{2} - \left(\sum_{i=1}^{n} t_{i}\right)^{2}}$$

$$b = \frac{7 \cdot 89.35 - 28 \cdot 19.78}{7 \cdot 140 - (28)^{2}} = 0.3654$$
$$a = \frac{19.78 - 0.3654 \cdot 28}{7} = 1.3643$$

### Esercizio 2: (Analisi di regressione)

| Anno | Domanda Y (10 <sup>6</sup> ) | tY    | $t^2$ | $Y^2$ |
|------|------------------------------|-------|-------|-------|
| 1    | 1,76                         | 1,76  | 1     | 3,09  |
| 2    | 2,12                         | 4,24  | 4     | 4,49  |
| 3    | 2,35                         | 7,05  | 9     | 5,52  |
| 4    | 2,80                         | 11,2  | 16    | 7,84  |
| 5    | 3,20                         | 16    | 25    | 10,24 |
| 6    | 3,75                         | 22,5  | 36    | 14,06 |
| 7    | 3,80                         | 26,6  | 49    | 14,44 |
| tot  | 19,78                        | 89,35 | 140   | 59,69 |

#### Determinare:

La deviazione standard dove y è la previsione e Y il valore reale

$$y_1 = 1,73$$
;  $y_2 = 2,10$ ;  $y_3 = 2,46$ ;  $y_4 = 2,83$ ;  $y_5 = 3,20$ ;  $y_6 = 3,56$ ;  $y_7 = 3,92$ 

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (Y_i - y_i)^2}$$

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (Y_i - y_i)^2} \qquad \qquad \sigma = \sqrt{\frac{1}{7-1} * 0.0675} = 0.106$$

## Esercizio 2: (Analisi di regressione)

| Anno | Domanda Y (10 <sup>6</sup> ) | tY    | $t^2$ | $Y^2$ |
|------|------------------------------|-------|-------|-------|
| 1    | 1,76                         | 1,76  | 1     | 3,09  |
| 2    | 2,12                         | 4,24  | 4     | 4,49  |
| 3    | 2,35                         | 7,05  | 9     | 5,52  |
| 4    | 2,80                         | 11,2  | 16    | 7,84  |
| 5    | 3,20                         | 16    | 25    | 10,24 |
| 6    | 3,75                         | 22,5  | 36    | 14,06 |
| 7    | 3,80                         | 26,6  | 49    | 14,44 |
| tot  | 19,78                        | 89,35 | 140   | 59,69 |

#### **Determinare:**

• Il coefficiente di correlazione,

$$r^{2} = \frac{\left[n \cdot \sum_{i=1}^{n} t_{i} \cdot Y_{i} - \left(\sum_{i=1}^{n} t_{i}\right) \cdot \left(\sum_{i=1}^{n} Y_{i}\right)\right]^{2}}{\left[n \cdot \sum_{i=1}^{n} t_{i}^{2} - \left(\sum_{i=1}^{n} t_{i}\right)^{2}\right] \cdot \left[n \cdot \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right]} = \frac{\left[7 \cdot 89.35 - 28 \cdot 19.78\right]^{2}}{\left[7 \cdot 140 - (28)^{2}\right] \cdot \left[7 \cdot 59.69 - (19.78)^{2}\right]} = 0.9824$$

### Esercizio 2: (Analisi di regressione)

| Anno | Domanda Y (10 <sup>6</sup> ) | tY    | $t^2$ | $Y^2$ |
|------|------------------------------|-------|-------|-------|
| 1    | 1,76                         | 1,76  | 1     | 3,09  |
| 2    | 2,12                         | 4,24  | 4     | 4,49  |
| 3    | 2,35                         | 7,05  | 9     | 5,52  |
| 4    | 2,80                         | 11,2  | 16    | 7,84  |
| 5    | 3,20                         | 16    | 25    | 10,24 |
| 6    | 3,75                         | 22,5  | 36    | 14,06 |
| 7    | 3,80                         | 26,6  | 49    | 14,44 |
| tot  | 19,78                        | 89,35 | 140   | 59,69 |

#### Determinare:

• La domanda prevista per l'anno successivo,

$$y(8) = 1,3643 + 0,3654 * 8 = 4,288$$

## Esercizio 3: (Media mobile esponenziale)

Facendo riferimento alla serie storica riportata nella tabella seguente determinare:

- Valutare la domanda dell'ultimo periodo (25) con i tre metodi indicati assumendo a = 0,3 e come previsione iniziale per LPD e per MME domanda prevista = 185.
- Determinare il numero di periodi significativi.
- Il metodo di previsione più adeguato tra LPD, media mobile su 3 periodi e media mobile esponenziale utilizzando il criterio del MAD (Mean Absolute Deviation).

|      |      | Ultimo periodo   |    | Media Mobile<br>3 periodi |    | Media mo            | b. exp |
|------|------|------------------|----|---------------------------|----|---------------------|--------|
| Mese | Dom. | Domanda prevista | AD | Domanda prevista          | AD | Domanda<br>prevista | AD     |
| 1    | 180  | 185              | 5  | _                         | -  | 185                 | 5      |
| 2    | 186  | 180              | 6  | -                         | -  | 184                 | 2      |
| 3    | 179  | 186              | 7  | -                         | -  | 184                 | 5      |
| 4    | 170  | 179              | 9  | 182                       | 12 | 183                 | 13     |
| 5    | 170  | 170              | 0  | 178                       | 8  | 179                 | 9      |
| 6    | 165  | 170              | 5  | 173                       | 8  | 176                 | 11     |
| 7    | 155  | 165              | 10 | 168                       | 13 | 173                 | 18     |
| 8    | 150  | 155              | 5  | 163                       | 13 | 167                 | 17     |
| 9    | 170  | 150              | 20 | 157                       | 13 | 162                 | 8      |
| 10   | 192  | 170              | 22 | 158                       | 34 | 165                 | 27     |
| 11   | 195  | 192              | 3  | 171                       | 24 | 173                 | 22     |
| 12   | 205  | 195              | 10 | 186                       | 19 | 179                 | 26     |
| 13   | 215  | 205              | 10 | 197                       | 18 | 187                 | 28     |
| 14   | 208  | 215              | 7  | 205                       | 3  | 195                 | 13     |
| 15   | 195  | 208              | 13 | 209                       | 14 | 199                 | 4      |
| 16   | 200  | 195              | 5  | 206                       | 6  | 198                 | 2      |
| 17   | 194  | 200              | 6  | 201                       | 7  | 199                 | 5      |
| 18   | 185  | 194              | 9  | 196                       | 11 | 197                 | 12     |
| 19   | 180  | 185              | 5  | 193                       | 13 | 194                 | 14     |
| 20   | 180  | 180              | 0  | 186                       | 6  | 189                 | 9      |
| 21   | 181  | 180              | 1  | 182                       | 1  | 187                 | 6      |
| 22   | 205  | 181              | 24 | 180                       | 25 | 185                 | 20     |
| 23   | 225  | 205              | 20 | 189                       | 36 | 191                 | 34     |
| 24   | 235  | 225              | 10 | 204                       | 31 | 201                 | 34     |
| 25   |      | 235              |    | 222                       |    | 211                 |        |

# Esercizio 3: (Media mobile esponenziale)

Valutare la domanda dell'ultimo periodo (25) con i tre metodi indicati assumendo a = 0,3 e come previsione iniziale per LPD e per MME domanda prevista = 185.

|      |      | Ultimo periodo      |    | Media Mobile<br>3 periodi |    | Media mob. exp      |    |
|------|------|---------------------|----|---------------------------|----|---------------------|----|
| Mese | Dom. | Domanda<br>prevista | AD | Domanda prevista          | AD | Domanda<br>prevista | AD |
| 1    | 180  | 185                 | 5  | -                         | ı  | 185                 | 5  |
| 2    | 186  | 180                 | 6  | -                         | -  | 184                 | 2  |
| 3    | 179  | 186                 | 7  | -                         | ı  | 184                 | 5  |
| 4    | 170  | 179                 | 9  | 182                       | 12 | 183                 | 13 |
| 5    | 170  | 170                 | 0  | 178                       | 8  | 179                 | 9  |
| 6    | 165  | 170                 | 5  | 173                       | 8  | 176                 | 11 |

$$\overset{\wedge}{X}_{t} = \overset{\wedge}{X}_{t-1} + a \cdot \left( Y_{t-1} - \overset{\wedge}{X}_{t-1} \right) 
a = 0.3$$

$$D_{2} = D_{1} + 0.3 \cdot (d_{1} - D_{1}) = 185 + 0.3 \cdot \left( 180 - 185 \right) = 183.5 \sim 184$$

$$D_{3} = D_{2} + 0.3 \cdot (d_{2} - D_{2}) = 183.5 + 0.3 \cdot \left( 186 - 183.5 \right) = 184.25 \sim 184$$

$$D_{4} = \dots$$

Determinare il numero di periodi significativi.

$$N = \frac{2-a}{a} = \frac{2-0.3}{0.3} = 5,667 \sim 6 \text{ periodi}$$

#### PREVISIONE DELLA DOMANDA MATERIALE DIDATTICO:

REPEREBILE SUL SITO: www.lasi.unimore.it

ESAME: «Fondamenti di Impianti e Logistica»

#### FILE SCARICABILI:

- previsione domanda dispense;
- previsione domanda esercizi;
- lucidi lezione teoria;
- lucidi lezione esercizi.

#### NOTE:

- <u>il materiale di cui ai punti 1) 3) e 4) fa parte del programma didattico d'esame nella sua interezza;</u>
- <u>il materiale di cui al punto 2) riporta anche gli esercizi n° 4 e n° 5</u> (inerenti i modelli di previsione della domanda con correzione di trend e stagionalità) <u>che non fanno parte del programma didattico del corso.</u>

## CONTATTI



Prof. Riccardo Melloni riccardo.melloni@unimore.it 331-6074463

Università di Modena and Reggio Emilia Dipartimento di Ingegneria "Enzo Ferrari" via Vignolese 905, 41100, Modena - Italia

Gruppo di Ricerca: "Impianti Industriali"

gruppoimpianti@unimore.it

Tel: 059-2056113

Ing. Giovanni Davoli Ing. Andrea Govoni Ing. Sergio A. Gallo.